
1

A Memory Representation of Random Forests
Optimized for Resource-Limited Embedded Devices

Justin Beaurivage, Messaoud Ahmed Ouameur, Senior Member, IEEE, and Frédéric Domingue

Abstract—Random forests are a versatile and effective machine
learning technique widely applied across various tasks. With the
increasing demand for deploying machine learning models on
resource-constrained embedded devices, such as microcontrollers,
challenges arise from the growing complexity of modern datasets.
These challenges often result in models that are too large in
memory and storage requirements to be feasibly implemented
on small devices.

In this work, we propose a lossless memory representation of
random forests that significantly limits the amount of random-
access memory (RAM) required for prediction tasks, while also
reducing the amount of non-volatile memory needed to store
the model. The approach achieves efficiency by embedding the
data of leaf nodes within the decision nodes, thereby streamlining
the tree structure. Additionnally, it supports in-place prediction
without requiring a decompression step.

To evaluate our method, we implemented four random forests
derived from real-world datasets onto four microcontroller plat-
forms. Our results demonstrate that prediction tasks can be
performed using at most 144 bytes of RAM for classification
tasks, and at most 48 bytes for regression tasks, while memory
accesses account for a maximum of 27.0% of the total CPU cycles.
On the fastest platform, prediction times ranged between 59 and
75 µs, highlighting the suitability of this method for a variety of
real-time applications.

Index Terms—Random forests, resource-limited systems, edge
computing, embedded devices

I. INTRODUCTION

Random forests (RF) are a powerful tool used in a variety
of machine learning tasks. They are widely popular for their
robustness, interpretability, and ease of implementation. Due
to their simplicity, random forest models may be used to
perform real-time predictions on resource-constrained devices
deployed on the edge [1]. Yet, as modern prediction tasks
become increasingly complex, model sizes also expand, often
growing too large for deployment on resource-limited embed-
ded devices. However, there are still significant advantages
to performing machine learning tasks on edge devices: more
useable data and actionable insights, reduced data transfer,
reduced latency, and reduced power consumption for con-
nected end devices [2]. There is therefore a demand to develop

Justin Beaurivage and Frédéric Domingue are with the Laboratory
for Technology, Innovation, and Performance in Sports (L-TIPS), and
Messaoud Ahmed Ouameur is with the Laboratory of Signal and Sys-
tem Integration (LSSI). All authors are affiliated with Université du
Québec à Trois-Rivières (UQTR), Canada (e-mail: justin.beaurivage@uqtr.ca;
messaoud.ahmed.ouameur@uqtr.ca; frederic.domingue@uqtr.ca).

© 2025 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

methods allowing resource-scarce devices, such as low-end
microcontrollers, to perform predictions on larger and more
complex machine learning models.

Some works have already shown that random forests can
be compressed to occupy significantly less storage space than
their uncompressed counterparts. Nonetheless, these compres-
sion methods often have limitations: some are lossy [3], mean-
ing that the forest may yield different prediction outcomes
after compression. Others can only compress random forests
in which all trees have identical structures (homogeneous
forests). Heterogeneous forest structures can however help
further reduce the model size by yielding prediction accuracies
comparable to larger, heterogeneous structures [4]. It has
been shown that random forests for regression tasks also
typically have poorer compression ratios than those meant for
classification tasks [5]. Most methods found in the literature
also typically aren’t optmized for deployment on resource-
constrained devices: the compressed forests may need to
be decompressed prior to being used for prediction tasks.
Some work has also gone into reducing the amount of RAM
and memory accesses needed to train forests and perform
predictions [6]. However we find that these methods still
require much more RAM than what is available on certain
embedded devices, which can be as low as 2 KiB [2].

In this paper, we propose a lossless, memory-efficient
representation of random forests, optimized for deployment
on resource-scarce embedded devices. With the understanding
that these devices are often extremely limited in the amount
of RAM and NVM available, we focus on minimizing RAM
necessary to perform predictions, while simultaneously reduc-
ing the non-volatile storage space needed to store the model.
A secondary objective is reducing the prediction latency.

The method works by encoding the prediction outcomes
directly in the decision nodes, thus eliminating the need for
distinct leaf nodes; the forest is then stored in a flat data
structure. This method allows for in-place prediction, thereby
removing the need for a decompression step, while avoiding
unaligned memory accesses, and reducing the RAM and NVM
requirements. It is also characterized by a deterministic predic-
tion time, making it suitable for some real-time applications.
This method also supports random forests with heterogeneous
tree structures [4].

II. PROPOSED MEMORY REPRESENTATION

We consider a random forest as schematized in Fig. 1. It
is composed of {t1, t2, · · · , tN} trees, where each tree tn
contains {un,1, un,2, · · · , un,Mn

} nodes, and where Mn is the

2

Fig. 1: A typical random forest.

Fig. 2: Memory layout of a decision node, and bit layout of
the IDX bitfield

number of nodes within the tree tn. We also consider the
feature vector ~x = (x1, x2, · · · , xd).

Building the memory representation of this forest is accom-
plished in two steps: First, we define a memory representation
of a single node, in which the potential prediction outcomes
are encoded. Then, we define a method to sequentially store
all the nodes in the forest.

A. Step one: Decision nodes

Each node contains 4 fields: LEFT, RIGHT, SPLIT, and
IDX. The field layout is depicted in Fig. 2. The IDX bit-
field determines the type of the LEFT and RIGHT fields. If
IDX.L_P = 1, then LEFT contains a prediction (ie, a leaf). For
classification problems, it contains the index of the predicted
class. For regression problems, it contains the prediction in 32-
bit floating-point format. Otherwise, if IDX.L_P = 0, LEFT
contains a relative pointer to the next decision node in the tree.
Similarly, if IDX.R_P = 1, RIGHT contains a prediction, and
a pointer to the next decision node otherwise.

Together, SPLIT and IDX.FEAT determine whether the
left or right branch is considered. SPLIT contains a 32-bit
floating point number which represents the threshold to obtain
a decision. IDX.FEAT contains the index i of the decision
feature xi. Thus if SPLIT ≤ xi, the left branch is taken.
Otherwise if SPLIT > xi, the right branch is taken.

Fig. 3: Random forest using our node layout.

By encoding the predictions in the decision nodes, we elim-
inate the need for dedicated leaf nodes. The forest depicted in
Fig. 1 becomes much simpler, as illustrated in Fig. 3.

Note that in this example, all the node’s fields are 4 bytes
wide; however this layout may easily be adjusted to allow for
a smaller storage utilization, at the cost of smaller maximum
tree and feature vector sizes.

B. Step two: Store the trees in memory

Next, we propose a method to arrange the forest’s nodes
into a flat, array-like structure. This is achieved in 3 steps:

1) Insert the first node of each tree at the beginning of the
array, in tree order:

{u1,1, u2,1, · · · , uN,1}

2) Append the remaining nodes in tree order, then in node
order:

{u1,2, u1,3, · · · , u1,M1 , u2,2, · · · ,
u2,M2 , · · · , uN,2, · · · , uN,MN

}

3) Finally, for each node that contains a pointer to another
node, adjust the pointer such that it points to the correct
node.

Fig. 4 shows the node arrangement as described in this
section. Note that the method makes no assumptions with re-
spect to the individual trees’ structures – one such assumption
might have been be that all trees share identical structures.
It therefore becomes trivial to use this method to represent
random forests with heterogeneous structures.

An open-source reference implementation is available at
https://github.com/L-tips/embedded-random-forest/.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we implement our forest representation on
four microcontroller platforms. Table I outlines the platforms
used for this experiment. The RP2350 chip is a dual-core, dual-
architecture microcontroller; we performed our benchmarks on
both architectures using only a single core. To mitigate the
significant performance penalty of storing the forest model
on external flash, and given the RP2350’s relatively abundant

3

(a) Node arrangement within a forest.

(b) Decision flow within a tree.

Fig. 4: Memory representation of a random forest

TABLE I: Hardware platforms used in benchmarks

Chip name
Microchip
ATSAMD21 [8]

Microchip
ATSAMD51 [9]

Architecture ARM® Cortex-M0+
ARM® Cortex-M4
with hardware float

CPU frequency 48 MHz 120 MHz
Onboard RAM 32 KiB 192 KiB
Onboard flash memory 256 KiB 512 KiB

Chip name
Raspberry Pi
RP2350 [10]
(ARM, single-core)

Raspberry Pi
RP2350 (RISC-V,
single-core)

Architecture ARM® Cortex-M33 RV32IMAC
CPU frequency 150 MHz 150 MHz
Onboard RAM 520 KiBa 520 KiBa

Onboard flash memory Noneb Noneb

a Supports up to 8 MiB of optional external PSRAM
b Up to 16 MiB of external flash

RAM, the models were moved to RAM for the prediction
speed benchmarks, In contrast, the other chips use onboard
flash memory, which incurs much smaller access delays.

We use four real-world datasets to solve two classification
and two regression problems. Three of the datasets used are
publicly available on Kaggle [7]. The fourth dataset, Skydive,
is a collection of sensor readings gathered by a wearable
tracker during 22 freefall skydiving jumps.

The forests were trained using the randomForest R
package [11], each containing 100 trees with a maximum
of 50 nodes per tree; the remaining parameters were left as
default. Table II shows some general information concerning
the datasets used to train each model, as well as the proportion
of nodes removed by our method when compared to a standard
RF implementation, such as the one depicted in Figure 1.

TABLE II: Comparison of forests trained over different
datasets

Dataset Problem type
features,
classes

Nodes
pruned

Skydive Classification 5, 9 53.2%
Iris Classification 4, 3 50.5%
Bike
Sharing

Regression 8, – 50.5%

Airfoil
Self Noise

Regression 5, – 50.5%

TABLE III: CPU cycles spent on memory accesses

Skydive Iris Bike Sharing Airfoil Self Noise
SAMD51 13.4% 12.1% 13.9% 10.6%
RP-ARM 27.0% 16.5% 19.9% 24.1%

A. Benchmark results

Each forest was then benchmarked in terms of processing
speed and RAM usage on all four platforms (Figure 5),
using the Rust compiler’s "s" optimization level and "fat"
link-time optimizations [12]. CPU cycles spent on memory
accesses were also measured on the SAMD51 and RP-ARM
platforms – the only two platforms with hardware support for
precise instruction-level profiling.

RAM usage during prediction is notably low: across all
platforms, our method requires at most 144 bytes for the 9-
class Skydive classification problem, and 48 bytes for regres-
sion problems. On the SAMD51 platform, less than 13.9%
of CPU time is spent on performing memory I/O, the being
remainder used to perform the actual predictions. On RP-
ARM, a comparatively larger share of CPU time is spent on
memory, due to its more efficient computations, shifting the
bottleneck toward memory access. Regression forests also use
less RAM than classification forests, as they compute a simple
running average of all the tree outcomes instead of tallying
votes across classes.

While RAM usage is not determined by the forest’s size, it
increases with the number of classes. It is used both for storing
the votes for each outcome (in classification problems), and for
saving CPU registers when entering the prediction subroutine.
The latter can be reduced through inlining optimizations,
which were disabled in this study for consistent benchmark-
ing. Likewise, differences in RAM usage across platforms
is explained by the number of available CPU registers, and
the presence of a hardware floating point unit (FPU), both of
which reduce temporary RAM usage.

RP-ARM achieved the fastest prediction speeds among
all platforms. While it shares the same clock speed, RAM,
and execute-in-place cache as RP-RISCV, its more capable
architecture—including an FPU and digital signal processing
(DSP) instructions—makes it far better suited for high-speed
prediction. In contrast, RP-RISCV’s simpler, area-optimized
design and lack of such features significantly reduce its
prediction throughput. On RP-ARM, prediction times ranged
from 59 µs to 75 µs.

B. Comparison with other methods

We have also implemented a standard random forest al-
gorithm on the SAMD51 plaform as a baseline on which to
compare our findings (Table IV). We found that a standard RF
uses more RAM than our method for classification problems,
while it uses 8 fewer bytes for regression problems. Our
method indeed requires the use of 2 additional CPU registers to
save the left and right node types (ie, decision or prediction) in
temporary variables. Therefore the state of these registers must
be saved in RAM when entering the prediction subroutine.
This increase in memory usage could easily be mitigated by
using compiler inlining optimizations.

4

(a) RAM usage (b) Processing speed

Fig. 5: Benchmark results for prediction tasks

TABLE IV: Comparisons with other RF methods

Skydive Iris
Bike
Sharing

Airfoil
Self Noise

RAM usage, in bytes (SAMD51)
Ours 88 64 24 24
Standard RF 120 72 16 16

(+36%) (+13%) (-33%) (-33%)
Prediction speed, in predictions/s (SAMD51)

Ours 3892 5411 3517 3511
Standard RF 2376 4403 2469 2451

(-39%) (-19%) (-30%) (-30%)
Total forest size, in KiB

Ours 57.42 8.63 76.56 76.56
Standard RF 193.34 30.70 193.34 193.34

(+236%) (+256%) (+153%) (+153%)
Boosted RF [13] 57.52 8.72 72.13 72.13

(+0.17%) (+1.0%) (-5.8%) (-5.8%)

Our method also offers significant prediction speed gains
over the standard RF implementation. The reduced total num-
ber of nodes in the forest also contributes to cutting the non-
volatile memory required to store the forest by more than
60% when compared to a standard RF algorithm. Finally, we
have also compared the NVM storage requirements with the
Boosted Random Forest [13], which uses a similar memory
representation as our proposed method. It uses a custom hard-
ware architecture, implemented on a field-programmable gate
array (FPGA). We find that the NVM storage requirements are
quite similar between the two methods. Yet, while the memory
representation proposed in [13] has the potential to be used in
regression forests, the Boosted RF implementation itself can
only be used for classification problems.

IV. CONCLUSIONS

In this work we suggest a method for representing random
forests in memory. This representation is particularly well
suited for resource-limited devices, such as microcontrollers.
In particular, the represented forests use a relatively small
amount of storage, with compression ratios comparable to the
Boosted Random Forest [13], and an improvement of more
than 60% over a standard random forest algorithm. Moreover,
carrying out prediction tasks using the proposed method re-
quires an almost-negligible amount of random-access memory,
rarely exceeding 100 bytes in typical use cases. On the RP2350

microcontroller, sub-100 µs prediction times are highly achiev-
able, even with relatively large forests – of the order of 100
trees with 50 decisions each – making this method useable for
a variety of real-time classification and regression problems.
Prediction times also show a significant improvement over a
standard RF. We have shown that heterogeneous forests can
trivially be represented, making this method quite flexible. The
forest representation is also lossless: the compressed forest will
generate identical outcomes as its uncompressed counterpart.

While the focus of this work was largely aimed at limiting
the RAM required to perform predictions to a minimum while
also reducing the amount of NVM space needed, further work
could be carried out to improve the prediction speed of the
proposed algorithm. In particular, the prediction tasks could be
parallelized on multi-core processors, thus providing a simple
and effective way of significantly reducing prediction times.

ACKNOWLEDGMENTS

The authors would like to thank Théo Duville for his work
on the Skydive dataset, as well as all those who participated
in the data collection.

REFERENCES

[1] F. Küppers, J. Albers, and A. Haselhoff, “Random Forest on an Embed-
ded Device for Real-time Machine State Classification,” in 2019 27th
European Signal Processing Conference (EUSIPCO), Sep. 2019, pp. 1–
5, iSSN: 2076-1465.

[2] S. Branco, A. G. Ferreira, and J. Cabral, “Machine Learning in
Resource-Scarce Embedded Systems, FPGAs, and End-Devices: A
Survey,” Electronics, vol. 8, no. 11, p. 1289, Nov. 2019, number: 11
Publisher: Multidisciplinary Digital Publishing Institute.

[3] A. Painsky and S, Rosset, “Compressing Random Forests,” in 2016 IEEE
16th International Conference on Data Mining (ICDM), Dec. 2016, pp.
1131–1136, iSSN: 2374-8486.

[4] M. Gashler, C. Giraud-Carrier, and T. Martinez, “Decision Tree
Ensemble: Small Heterogeneous Is Better Than Large Homogeneous,”
in 2008 Seventh International Conference on Machine Learning
and Applications, Dec. 2008, pp. 900–905. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/4796917

[5] A. Painsky and S. Rosset, “Lossless Compression of Random Forests,”
Journal of Computer Science and Technology, vol. 34, no. 2, pp. 494–
506, Mar. 2019.

[6] C. Slimani, C.-F. Wu, S. Rubini, Y.-H. Chang, and J. Boukhobza,
“Accelerating Random Forest on Memory-Constrained Devices Through
Data Storage Optimization,” IEEE Transactions on Computers, vol. 72,
no. 6, pp. 1595–1609, Jun. 2023, conference Name: IEEE Transactions
on Computers.

[7] “Find Open Datasets and Machine Learning Projects.” [Online].
Available: https://www.kaggle.com/datasets

[8] Microchip, “SAM D21 Family Data Sheet,” 2021. [On-
line]. Available: https://ww1.microchip.com/downloads/en/DeviceDoc/
SAM-D21DA1-Family-Data-Sheet-DS40001882G.pdf

[9] Microchip, “SAM D5x/E5x Family Data Sheet,” 2020. [Online].
Available: http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_
D5xE5x_Family_Data_Sheet_DS60001507F.pdf

[10] Raspberry Pi, “RP2350 Datasheet,” 2024. [Online]. Available: https:
//datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

[11] L. Breiman, A. Cutler, A. Liaw, and M. Wiener, “Breiman
and Cutlers Random Forests for Classification and Regression,”
Jan. 2022. [Online]. Available: https://cran.r-project.org/web/packages/
randomForest/randomForest.pdf

[12] The Rust Project, The rustc book, May 2025. [Online]. Available:
https://doc.rust-lang.org/1.87.0/rustc/

[13] Y. Mishina, R. Murata, Y. Yamauchi, T. Yamashita, and H. Fujiyoshi,
“Boosted Random Forest,” IEICE Transactions on Information and
Systems, vol. E98.D, no. 9, pp. 1630–1636, 2015.

