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ABSTRACT
Context-aware decision-making is essential to the effectiveness of

safety-critical systems, where the same input may require differ-

ent actions depending on the situation. Machine learning offers a

path to capturing this nuance, enabling real-time responses that go

beyond rigid, rule-based logic. While much attention has gone to

deep learning, simpler models like random forests remain powerful

and better suited to constrained environments such as embedded

systems. In this paper, through the practical example of automatic

activation devices used in skydiving, we show how deploying a

limited random forest model can provide context awareness to a

safety-critical system, thus improving its effectiveness at preventing

injury. We show that while smaller, simpler models may sacrifice

some accuracy compared to their more complex counterparts, their

advantages in interpretability and lower hardware demands often

outweigh this tradeoff. Importantly, we argue that in safety-critical

systems, an algorithm need only perform well enough to provide

a meaningful safety benefit. Pursuing maximal performance can

lead to disproportionate costs, both in complexity and resources,

with little or no corresponding gain in actual safety. More broadly,

we advocate for smaller systems with a clear and defined purpose,

where their simplicity is a clear advantage from the fact that they

are much easier to analyze and verify in the context of their safety

applications.
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1 INTRODUCTION
In an era where machine learning (ML) and artificial intelligence is

increasingly defined by scale, it is easy to assume that larger models

are inherently better. But when deployed in safety-critical systems,

where decisions must be made in real time, under strict energy and

resource constraints, and where failure can result in loss of life,

this assumption breaks down. In these contexts, simplicity is not a

limitation, but rather a requirement. The prevailing "more is better"

mindset has led to models that are harder to interpret, harder to

verify, and often offer diminishing returns beyond a certain com-

plexity. This article argues for a deliberate shift in focus: toward

smaller, more efficient models that prioritize explainability, formal

verifiability, and energy awareness over raw performance. In doing

so, we challenge the assumption that increasing model complexity

is always the path to better outcomes, and instead advocate for
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intelligent sufficiency over unchecked scale. Using the case study

of an automatic emergency activation device (AAD) for skydiving,

a system designed to deploy a reserve parachute when the skydiver

cannot, we demonstrate how a compact and carefully tuned random

forest can meet the strict demands of safety, without excess. Impor-

tantly, we strive to show that safety can be improved by providing

context-aware decision making to existing algorithms, while limit-

ing ourselves to the resources already available on modern AAD

hardware. In doing so, we advocate for a broader rethinking of ma-

chine learning’s role in safety-critical domains and, more generally,

in a world increasingly defined by its ecological and computational

limits.

2 BACKGROUND
2.1 Safety-critical systems
A safety-critical system is traditionally defined as a system where

failure could lead to consequences deemed unacceptable or cata-

strophic [10]; examples of unacceptable consequences can include

loss of life, significant property damage, or environmental harm.

As the world evolves and computers become more and more ubiq-

uitous, we must carefully consider the failure modes of computing

systems when they play a safety-critical role. For example, radia-

tion is a major concern for computers in spacecraft; it can cause

bit flips in memory, leading to unpredictable behavior. Similarly,

in medical devices, software bugs or hardware malfunctions can

result in incorrect diagnoses or treatments, endangering patients’

lives. Analyses of past incidents have shown that software designs

are often unnecessarily complex when it comes to safety-critical

systems. Moreover, in [12] the author argues that the context in

which software is used is critical to determining the safety qualities

of the overall system, and the software cannot be qualified as safe

in and of itself. As such, we argue that simpler and more context-

aware systems are essential to guaranteeing the safety of operation

in safety-critical systems.

2.2 Automatic Activation Devices
The automatic activation device is a safety device used in civilian

and military parachuting, and is universally used by the vast ma-

jority of skydivers. It dramatically increases the safety of jumpers

by automatically deploying their reserve parachute when it detects

that an impact with the ground is imminent: for example, when the

jumper is unconscious, injured, or otherwise unable or unwilling

to deploy their parachute on their own.

Its mode of operations consists of measuring the barometric

altitude, and evaluating whether activation is necessary based on
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predefined conditions; namely, the device will activate if the sky-

diver is falling above a preset vertical velocity and below a preset

height above ground level. According to Airtec GmbH, a leading

AAD manufacturer, AADs have saved at least 5200 lives since their

introduction in 1991 [9].

It is obvious that AADs very much fit the definition of a safety-

critical device: their malfunction or improper operation may easily

result in loss of life. Beyond their utility in sport skydiving, AADs

are also used by jumpers who serve as firefighters, search and res-

cue teams, and military personnel, supporting critical operations

that contribute directly to public safety and societal well-being.

AADs must typically be very energy efficient; some models can

remain in service for 15 years on a single charge, without requiring

maintenance [2]. The amount of computing power, and the sensors

available on the device must therefore be quite limited in order to

avoid depleting the battery.

Figure 1: An automatic activation device used in skydiving.

2.3 Machine learning in safety-critical
applications

In recent years, deep neural networks, large language models, and

artificial intelligence have captured much of the public and aca-

demic spotlight. While these approaches have shown impressive

capabilities, a wide range of other machine learning methods con-

tinue to evolve and find application across many domains [14]. In

safety-critical systems in particular, machine learning is increas-

ingly valued for its ability to process complex sensor inputs, gen-

eralize from limited data, and support real-time decision-making.

Unlike traditional rule-based systems, machine learning algorithms

can adapt to subtle and high-dimensional patterns in the data, en-

abling automation in environments that would otherwise be diffi-

cult to model explicitly. In some structured classification tasks with

safety implications, ML models have shown superior performance

compared to hand-crafted logic [8].

However, this promise comes with substantial challenges. Many

ML models, particularly complex ones like deep neural networks

or large ensembles, are inherently opaque, and often described as

"black boxes." This lack of transparency makes it difficult to under-

stand why a specific decision was made, complicating the process

of debugging, validation, and certification. In safety-critical con-

texts, where the consequences of a wrong decision can be severe or

irreversible, this opacity is more than an inconvenience: it’s often

an unacceptable risk.

Moreover, ML models can exhibit non-deterministic behavior.

Small changes in input can lead to disproportionately large changes

in output, especially near decision boundaries. This sensitivity un-

dermines the predictability required in systems where consistency

and reliability are paramount. Compounding this issue is the risk

of overfitting: a model that performs well on training data might

still fail when deployed in the real world, particularly if it learned

superficial correlations rather than robust causal relationships.

One of the most fundamental limitations of ML in safety-critical

applications is the difficulty to formally verify the trained models.

Traditional safety engineering often relies on methods like model

checking or theorem proving, which require clear, well-defined

logic. Most ML models, however, are too complex or too opaque to

submit to such rigorous analysis. Without formal guarantees, the

trust in such systems rests on empirical validation, which may be

insufficient for edge cases or rare, high-risk scenarios.

Recently some work has gone into shifting the paradigm from

large, general and computationally intensivemodels towards smaller

andmore specialized algorithms, making them accessible for deploy-

ment on embedded systems and on the edge [5], [3]. Deployment

however presents unique challenges: ML models that run well in

simulation may behave differently when deployed on embedded

hardware. Resource constraints, such as limitedmemory, processing

power, and energy, can affect performance, especially for real-time

applications. Sensor noise, quantization effects, and timing jitter

further complicate matters, potentially leading to behavior that was

never observed during training and/or in simulation.

In light of these challenges, it becomes clear that raw model

performance is only part of the equation. For ML to be used respon-

sibly in safety-critical applications, model design must prioritize

predictability, simplicity, explainability, and verifiability. In many

cases, the most prudent approach is not to push for the most power-

ful model possible, but rather to ask: What is the smallest, simplest

model that performs well enough–and can be trusted?

2.4 Random forests
Random forests (RF) are a type of ensemble learning method used

for classification and other prediction tasks. They work by combin-

ing the outputs of many individual decision trees, each trained on a

random subset of the data and features [6]. For classification, each

tree casts a "vote," and the class with the majority vote becomes the

model’s prediction. This structure makes random forests robust to
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overfitting and capable of capturing complex patterns in data.

In practice, each decision tree in the forest is a flowchart-like

structure that splits the data based on simple rules, such as whether

a sensor reading is above or below a certain threshold. Two key

parameters govern the complexity of a random forest: the number

of trees in the forest and the size of each tree, typically controlled

by limiting the number of nodes or the depth of the tree. Increasing

these parameters can improve accuracy up to a point, but also leads

to larger models that require more memory, take longer to evalu-

ate, and are harder to interpret; this tradeoff between complexity

and performance becomes especially important in resource-limited

systems.

Figure 2: A typical, simplified random forest model.

3 A LIMITED RANDOM FOREST
In this section, we challenge the notion that larger, more complex

machine learning models always yield better results through a prac-

tical example.

AlthoughAADs have unquestionably enhanced the overall safety

of skydiving, they are not without limitations, and in rare cases,

can fail or introduce additional risks. The algorithms embedded in

modern AADs, while simple and very reliable, still handle some

edge cases poorly.

Commanded deployments when the reserve parachute should

have remained undeployed can be highly problematic. For exam-

ple, the reserve parachute may be automatically deployed near

the ground during a high-performance landing–a highly complex

maneuver, that requires immense skill and precision to execute

safely–if the pilot sustains a vertical velocity high enough to trigger

the deployment mechanism. This can easily prove fatal by interfer-

ing with the jumper’s carefully timed sequence of actions. Reserve

parachute deployments under a fully functional main parachute

may also create entanglement situations that can put the jumper’s

safety at risk. Conversely, wrongly inhibited reserve parachute

deployments can be equally as dangerous. For instance, an out-of-

control and unconscious wingsuit pilot may sustain a rate of fall

low enough as to not trigger the release mechanism.

These blind spots may be mitigated by devising algorithms that

are more aware of the jumper’s context. In the first example, an

accident could be avoided if the algorithm would detect that the

jumper is performing an high-speed maneuver under a fully func-

tional parachute.

Using a machine learning algorithm to detect and classify the

jumper’s current flight phase can provide the context needed to

fill the gaps where the established algorithms cannot perform ade-

quately. We have found that random forests, an arguably extremely

simple and lightweight ML method, can perform exceedingly well

in predicting a jumper’s flight phase. Using the predicted flight

phase, the AAD can make more informed decisions, by potentially

inhibiting a deployment if it detects that the jumper is in a flight

phase where this would cause them harm. This configuration al-

lows for the phase classification model to complement the existing

AAD deployment logic, instead of replacing it completely. More

advanced algorithms could use the model to tune its deployment

criteria based on the detected flight phase, although this is beyond

the scope of this study.

3.1 A simple, yet effective model
Using data collected from wearable trackers during 22 freefall sky-

diving jumps and the randomForest R package [7], we train a

random forest model to predict the flight phase of a skydiver. We

split the jumps into 8 distinct classes, as shown in Table 1. Each

recorded data point contains 7 features:

• Horizontal speed: vh
• Vertical speed: vz
• Height above ground: hAGL
• 3D components of the acceleration vector: ax , ay , az
• Glide Ratio:

L
D

This model will serve as a starting point to show howwe can reduce

its complexity, while remaining sufficiently accurate to improve an

AAD’s effectiveness. Note that each jump does not necessarily go

through all classes, or in the same order. Figure 3 illustrates how

the model predicts the flight phases for 10 distinct skydives, while

Table 2 shows the general parameters that define the model.

The base model is relatively large and complex, but captures

a wide range of behaviors with excellent predictive performance.

From this starting point, we will systematically reduce the model’s

size and complexity, aiming to find the simplest version that is still

effective at providing context with the goal of improving safety,

without significantly impacting resource consumption.

3.2 Diminishing returns
The most obvious method to reduce the model complexity is to

simply reduce the forest’s width (number of trees) and depth (num-

ber of nodes per tree). In Figure 4, we can clearly see that for the

problem at hand, a forest with more than 50 trees offers no perfor-

mance advantage compared to a smaller forest. By reducing both
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Table 1: Flight phases

Class Description

Airplane Jumper is riding the aircraft to exit altitude

Freefall Jumper is in freefall

Wingsuit Jumper is gliding with a wingsuit

Opening

The parachute is opening and the jumper

is decelerating

Canopy Flight under a deployed canopy

Swoop Jumper is performing a high-speed landing

Recovery arc

Jumper is transitioning from vertical

to horizontal flight during a high-speed landing

Landing Jumper is touching down on the ground

Figure 3: Flight phase classifications for 10 skydives using a
random forest model.

Table 2: Base model

Model: base
Number of trees 300

Number of nodes per tree 2049

Features vh , vz , hAGL , ax , ay , az ,
L
D

Overall accuracy 99.84%

the number of trees and the number of nodes per tree, the trimmed
model (Table 3) has its complexity reduced by 91.9%, with a small

loss in overall accuracy of 0.13% when compared to the basemodel.

Table 3: Trimmed model

Model: trimmed
Number of trees 50

Number of nodes per tree 999

Features vh , vz , hAGL , ax , ay , az ,
L
D

Overall accuracy 99.71%

Figure 4: Prediction error per class, in function of the num-
ber of trees in the forest.

While the trimmed model significantly reduces the forest com-

plexity, it requires parameters that can’t be measured with current

AAD hardware. In particular, the horizontal speed and glide ratio

are typically measured with a GNSS receiver, which is relatively

power-hungry in a context where ultra-low power consumption

is a priority. We are therefore interested in stripping the model

down to the bare minimum where it is still effective in aiding the

AAD in making context-aware decisions, while avoiding to induce

additional hardware requirements, both in terms of computing

power and power consumption. Including a GNSS receiver would

also induce additional cost, as they are typically relatively costly.

Furthermore, including a GNSS receiver would add a variety of

failure modes that each should imperatively be handled gracefully

in order to guarantee safety, ranging from loss of signal, to noisy

data, and even malicious actors deliberately spoofing the received

coordinates [15].

3.3 Just enough is good enough
In this next experiment we train a random forest model that uses

sensor readings that are already available current AAD hardware,

or that could be easily integrated while maintaining a high power

efficiency (ie, a MEMS accelerometer). The minimal model (Table

4) is 97.6% less complex than the base model, and 70% less complex

than the trimmed model. However, this model shows a noticeable

drop in raw overall accuracy. Notably, the model becomes less ac-

curate at detecting a clear transition between adjacent flight phases.

This loss in accuracy can be mitigated by recombining the classes

that are functionnally similar–that is, by detecting not what is hap-
pening, but by informing the AAD how it should respond if its

deployment criteria are met. For instance, the ADD response should

be identical whether the jumper is in the Canopy or the Opening

phase. Table 5 shows the effectiveness of each model at improving

the AAD’s function.

While theminimal model does not achieve perfect prediction

accuracy, it is still sufficiently effective at providing context to the
AAD, thus improving its overall safety value by a significant margin.
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Table 4: Minimal model

Model:minimal
Number of trees 30

Number of nodes per tree 499

Features vz , hAGL , ax , ay , az
Overall accuracy 99.10%

Table 5: Effectiveness of the models.

Class

Accuracy

(%)

False positives

(%)

False negatives

(%)

Model: base
Airplane 99.98 0.02 0

Freefall 96.73 0 2.29

Wingsuit 99.76 0 0

Opening 99.06 0 0

Canopy 99.57 0 0.06

Swoop 99.60 0.27 0

Recovery Arc 98.71 0 0

Landing 96.98 1.51 0

Model: trimmed
Airplane 99.98 0.02 0

Freefall 97.05 0 2.29

Wingsuit 99.70 0 0

Canopy 98.97 0 0.26

Swoop 99.46 0.27 0

Recovery Arc 98.08 0 0

Landing 97.38 1.31 0

Model:minimal
Airplane 99.95 0.05 0

Freefall 95.25 0 2.71

Wingsuit 99.40 0 0

Opening+Canopy 98.86 0 0.93

Recovery Arc+

Swoop+Landing

94.30 5.70 0

Figure 5: A prototype data acquisition setup, showing a
MEMS barometer (in green), and a GNSS receiver (in red),
which could be eliminated. Note that the MEMS accelerom-
eter is missing in this image.

For example, using this model would have inhibited 94.3% of false

deployments during a high performance landing, and 99.95% of

false deployments inside an aircraft.

3.4 A note on deployments
In this study, we have focused on simulating our models. While we

haven’t implemented them on hardware, we are still interested in

estimating the hardware resources required to deploy them. Some

previous work has gone into reducing the amount of storage [1],

memory [4], and latency [11] of random forests deployed on em-

bedded hardware. Using the method presented in [4], we estimate

the storage and memory that would be required to deploy each

model on the ATSAMD21 [13], a relatively small, low-power and

ubiquitous microcontroller boasting a single ARM® Cortex-M0+

core. Table 6 shows the hardware resources necessary to deploy

the models; only minimal would fit on the onboard flash memory,

which has a maximum capacity of 256 KiB. Attempting to deploy

the other two models would require more powerful devices, driv-

ing up both the cost and power consumption of the system. We

also notice that the memory requirements are quite negligible in

each case; using the method in [4] also does not require the use of

floating point arithmetics, further driving down the computational

power requirements
1
.

Table 6: Hardware resources needed to deploy themodels on
an ATSAMD21 microcontroller.

Model base trimmed minimal
RAM usage (bytes) 128 128 104

Storage (KiB) 7203.5 585.4 175.4

Fits in flash memory? No No Yes

3.5 Limitations and further work
Despite the benefits, the addition of a context-aware model intro-

duces a critical new concern: the potential for false negatives, where

valid emergency deployments are mistakenly inhibited. These cases,

though rare, are far more severe in consequence than false positives.

A missed deployment in a true emergency scenario represents a

catastrophic failure, potentially resulting in fatal injury.

In our tests, the model misclassifies 2.71% of the data points

belonging to the Freefall class, and 0.93% of the points belonging to

the Opening+Canopy class–both of which should trigger an emer-

gency deployment if the AAD’s conditions are met–mistakenly

labeling them as a phase where deployment should be inhibited.

However, because the model is intentionally kept simple and is

highly explainable, we can clearly identify the cause of these mis-

classifications: all of them occur in conditions at which the AAD

would not have initiated a deployment. As a result, in a real-world

scenario, these cases would not lead to an inhibited activation, and

the safety-critical function of the AAD would remain unaffected.

That being said, none of our training data contains situations where

1
The random forest algorithm uses floating point arithmetics during the training

phase, but at run-time the classification can be implemented using exclusively integer

arithmetics.
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the AAD would have activated. This is of course a limitation of our

study; the recording of data during intentional AAD deployments

would impart obvious ethical concerns, and they rarely occur natu-

rally in the field.

Subsequent efforts can also be carried out to improve the min-
imal model’s accuracy without increasing its complexity. For in-

stance, the model has no concept of time dependence; many of the

classification errors come from misclassifying a single point within

a long stream of correct predictions. The addition of a simple post-

processing filter could help curb those errors without requiring

additional computing power.

Ultimately, this study presents a proof-of-concept and insights

into how intelligent and context-aware software can help improve

safety. However, proper risk assessment and software verification

studies should absolutely be conducted before considering using

our proof-of-concept with real-world systems.

4 CONCLUSION
In its essence this work highlights a fundamental limitation of

rule-based approaches in safety-critical systems: their difficulty in

capturing context. Although traditional algorithms can handle well-

defined, static decision rules, they often struggle or outright fail

when decisions depend on nuanced, situational factors. By introduc-

ing compact, context-aware models like a tuned random forest, we

show that it’s possible to bridge this gap with minimal complexity

and maximal relevance to real-world conditions.

Context awareness is essential in any safety-critical system

where correct action depends not just on sensor inputs, but on

understanding when and why those inputs matter. Many such

systems operate in dynamic, uncertain environments where rigid

rules or purely model-based logic fall short. The same signal can

demand opposite responses depending on timing, surroundings,

or intent—subtleties that static decision boundaries often cannot

capture. Incorporating even minimal context through lightweight

learning models enables systems to distinguish between superfi-

cially similar situations with very different safety implications. This

shift from reaction to interpretation marks an interesting step to-

ward more resilient, human-aligned automation.

In skydiving as well as other safety-critical domains, the goal is

not to maximize raw predictive performance but to achieve suffi-

cient accuracy within strict operational constraints. Systems must

be reliable, interpretable, and resource-efficient, especially when de-

ployed on edge devices with limited compute, memory, and power.

By focusing on compact, context-aware models that do just enough

to support safe decision-making, we move toward solutions that

are not only effective but also practical and trustworthy in the en-

vironments where they matter most.

This work shows that achieving context-aware decision-making

doesn’t require more resources—just smarter use of the ones we

already have. By trimming away excess complexity and focusing on

what trulymatters, we can design systems that are both efficient and

capable. In safety-critical applications, intelligent use of resources

isn’t just a technical choice—it’s a path to more reliable, deployable,

and responsible technology.
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